Search results

1 – 2 of 2
Article
Publication date: 4 January 2021

Amin Farzin, Mehrangiz Ghazi, Amir Farhang Sotoodeh and Mohammad Nikian

The purpose of this study is to provide a method for designing the shell and tube heat exchangers and examine the total annual cost of heat exchanger networks from the economic…

Abstract

Purpose

The purpose of this study is to provide a method for designing the shell and tube heat exchangers and examine the total annual cost of heat exchanger networks from the economic view based on the careful design of equipment.

Design/methodology/approach

Accurate evaluation of heat exchanger networks performance depends on detailed models of heat exchangers design. The simulations variables include nine design variables such as flow direction determination of each of the two fluids, number of tubes, number of tube passes, length of tubes, the arrangement of tubes, size and percentage of baffle cut, tube diameter and tube pitch. The optimal designing of the heat exchangers is based on geometrical and hydraulic modeling and using a hybrid genetic particle swarm optimization algorithm (PSO-GA) technique. In this paper, optimization and minimization of the total annual cost of heat exchanger networks are considered as the objective function.

Findings

In this study, a fast and reliable method is used to simulate, optimize design parameters and evaluate heat transfer enhancement. PSO-GA algorithms have been used to minimize the total annual cost, which includes investment costs of heat exchangers and pumps, operating costs (pumping) and energy costs for utilities. Three case studies of four, six and nine streams are selected to demonstrate the accuracy of the method. Reductions of 0.55%, 23.5% and 14.78% are obtained in total annual cost for the selected streams, respectively.

Originality/value

In the present study, a reliable method is used to simulate and optimize design parameters and the economic optimization of the heat exchanger networks. Taking into account the importance of shell and tube heat exchangers in industrial applications and the complexity in their geometry, the PSO-GA methodology is adopted to obtain an optimal geometric configuration. The total annual cost is chosen as the objective function. Applying this technique to case studies demonstrates its ability to accurately design heat exchangers to optimize the objective function of the heat exchanger networks by giving the detail of design.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 January 2021

Reza Ramezanpour Jirandeh, Mehrangiz Ghazi, Amir Farhang Sotoodeh and Mohammad Nikian

The purpose of this paper is to present a novel and applied method for optimum designing of plate-finned heat exchanger network. Considering the total annual cost as the objective…

Abstract

Purpose

The purpose of this paper is to present a novel and applied method for optimum designing of plate-finned heat exchanger network. Considering the total annual cost as the objective function, a network of plate-finned heat exchanger is designed and optimized.

Design/methodology/approach

Accurate evaluation of plate-finned heat exchanger networks depends on different fin types with 10 different geometrical parameters of heat exchangers. In this study, fin numbers are considered as the main decision variables and geometrical parameters of fins are considered as the secondary decision variables. The algorithm applies heat transfer and pressure drop coefficients correction method and differential evolution (DE) algorithm to obtain the optimum results. In this paper, optimization and minimization of the total annual cost of heat exchanger network is considered as the objective function.

Findings

In this study, a novel and applied method for optimum designing of plate-finned heat exchanger network is presented. The comprehensive algorithm is applied into a case study and the results are obtained for both counter-flow and cross-flow plate-finned heat exchangers. The total annual cost and total area of the network with counter-flow heat exchangers were 12.5% and 23.27%, respectively, smaller than the corresponding values of the network with cross-flow heat exchanger.

Originality/value

In this paper, a reliable method is used to design, optimize parameters and the economic optimization of heat exchanger network. Taking into account the importance of plate-finned heat exchangers in industrial applications and the complexity in their geometry, the DE methodology is adopted to obtain an optimal geometric configuration. The total annual cost is chosen as the objective function. Applying this technique to a case study illustrates its capability to accurate design plate-finned heat exchangers to improve the objective function of the heat exchanger network from the economic viewpoint with the design of details.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 2 of 2